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The 2nd Annual Meeting was held from 26-28th May 
2020.  Due to the COVID-19 pandemic, the meeting could not 
be hosted at KIT in Karlsruhe as initially planned, but was 
conducted as a digital format. The first day of the meeting 
was dedicated to scientific outcome with 16 scientific 
contributions presented as a public online session. In total, 
almost 80 people joined this session on this first day. This 
newsletter shows results presented in the framework of the 
Digital Earth 2nd Annual Meeting. 
This newsletter shows a selection of results presented in the 
framework of the Digital Earth 2nd Annual Meeting that took 
place from 26 to 28 May 2020. 

Deep neural networks for total organic carbon 
prediction and data-driven sampling 
Everardo González and Ewa Burwicz 
GEOMAR Helmholtz Centre for Ocean Research Kiel 

 
World’s global ocean comprises of about 72% of the total 

Earth’s surface. However, due to its size and available 

technology, direct seafloor samples collected so far are 

sparse in space. The existing data sets on sediment 

composition are inadequate to quantify the fluxes of carbon 

and other seawater constituents across the seabed at global 

scale. Sediment and ocean models are heavily relying on 

these fluxes to simulate the uptake of atmospheric CO2 and 

the biogeochemical cycles in the ocean. Moreover, the 

challenging sampling campaigns are often restricted by the 

amount of ship time, funds, and the lack of consistent 

methodologies to collect and process the data.  

To overcome this problem, machine learning methods were 

adapted to marine sciences to approximate the seafloor 

physical and biogeochemical properties without the urge of 

direct sampling. Some of these methods (e.g. k-Nearest 

Neighbors) provide a sophisticated averaging tool to estimate 

the seafloor property (e.g. organic carbon content) based on 

the data points nearest in space. However, this approach 

performs better in more homogenous environments, which 

does not apply to global scale problems.  

Over the past decade, deep learning has been used to solve 

a wide array of regression and classification tasks. Compared 

to classical machine learning approaches (k-Nearest 

Neighbors, Random Forests etc.), deep learning algorithms 

excel at learning complex, non-linear internal representations 

in part due to the highly over-parameterized nature of their 

underling models; thus, this advantage often comes at the 

cost of interpretability. In this work, we used deep neural 

networks (DNN) to assess global total organic carbon (TOC) 

seafloor concentration map. Implementing Softmax 

distributions on implicitly continuous data (regression tasks), 

we were able to obtain probability distributions and the 

model’s intrinsic information. A variation of Dropout method 

i.e. the Monte Carlo Dropout is used during the inference step 

providing a tool to model prediction reliability. Additionally, 

to global TOC predictions, we used these techniques to create  

 
a model information map which is a key element to develop 
new data-driven sampling strategies for data acquisition. This 
model information map provides a quantitative analysis of the 
model information and allows us to define geographical 
locations that are under-sampled. By acquiring information at 
these selected coordinates during the research cruises and 
sampling planning programs, we will be able to quickly 
improve our overall global predictions. 
 

 
Figure 1: Global seafloor Total Organic Carbon predictions (wt. %) 

derived from the new Deep Neural Network model. 

Estimation of methane and ethane concentrations by 
means of neural network 

Andrey Vlasenko, Volker Matthias, Ulrich Callies 
Helmholtz-Zentrum Geesthacht - Centre for Materials and Coastal 

Research (HZG)  

 
Methane is one of the most important greenhouse gases 
present in the atmosphere, and therefore its estimate is one 
of the priority directions in environmental sciences and the 
Digital Earth project in particular. Methane has several 
natural and anthropogenic sources such as swamps, animal 
husbandry, growing rice, oil and gas exploration, fuel 
combustion, etc. At present, the most popular method to 
estimate methane concentration in air employs discrete 
chemical transport models (CTMs). Typical CTMs use 
emissions and meteorological data as inputs from which they 
calculate concentrations, transport and transformation of 
chemicals in the atmosphere. Such models have been 
continuously been improved including more details so that 
they generally require much computational power. Neural 
networks (NN) may become a cheaper alternative to CTM in 
terms of computational resources. We expect that in certain 
cases fast NNs could substitute CTMs with comparable 
accuracy. We test this concept considering the example of 
ethane and methane with two independent NNs. 
 
We design the first NN for searching anomalies in methane 
and ethane concentrations during cruise measurements near 
oil fields in the North Sea basin. Note that nineteen percent 
of atmospheric methane is associated with oil and gas mining 
production, more than half of it leaks directly from the fields. 
The NN, installed on a laptop, can use current physical 
parameters of the surrounding atmosphere from the onboard 
ship sensors and estimate the methane and ethane 
concentration in this location.  If the estimate does not match 



 

measured concentrations, one can conclude that an anomaly 
was detected which may be associated with new oil or gas 
fields or substantial changes in the known ones. In this sense, 
the NN is a compact smart monitoring tool. The NN doing this 
job is quite simple: it consists of three dense layers, nine 
inputs, and one output. We used the available cruise data to 
test and train it. An example of NN estimates compared to 
the real measurements is given in Figure 2. Being relatively 
simple, this NN can nevertheless reliably predict local 
methane concentrations near the previous cruise measuring 
routes. It must be noted, however, that oil fields contribute 
only an estimated 19% to methane concentrations in the 
atmosphere. Thus, measured anomalies can also originate 
from other sources.  
 
 

 
Figure 2: Estimated (blue) and measured (red) methane 

concentrations from cruise data in the North Sea.     

To exclude the impact from other sources, we developed the 
second NN, which estimates ethane concentrations in the 
atmosphere. Note that natural gas contains up to several 
percent of ethane, giving 60% of the atmospheric ethane. 
The ethane/methane concentration ratio is unique for each 
oil or gas field, serving as a kind of fingerprint. Methane has 
a long lifetime (decades), it has several sources, and 
therefore it is hard to detect whether measured gas is leaking 
now from an oil field, or if it came from a different source. 
Ethane is less persistent, but it has a long enough lifetime 
(several weeks) for detection. We trained and validated the 
second NN on output from the Consortium Multiscale Air 
Quality Model (CMAQ) for the European domain. At present, 
the second NN explains more than 50% off-seasonal ethane 
variability. An example of ethane estimates by means of CTM 
CMAQ and NN is shown in Figure 3. 

 

  
Figure 3: Ethane concentration anomalies estimated with CMAQ (left) 

and NN (right).  

Similar to the CTM, the NN calculates concentrations for all 
nodes of the discretized European domain. In our case, the 
spatial resolution is 64x64 km. Such discretization is too 
coarse to detect anomalies in ethane emission from gas fields 
as their characteristic scale is only a couple of kilometers. 
However, the NN can identify ethane stemming from other 
sources. Calculations with the first NN do not involve any 
spatial discretization, but applicability of this NN is limited to 
a very narrow area. The strength of our approach lies in the 
combination of the two NNs. Improving the method of such 
combination will be a focus point of our future research within 
the Digital Earth project. 

 
Using machine learning for automated site detection of 
seafloor massive sulfides 
Amir Haroon 
GEOMAR Helmholtz Centre for Ocean Research Kiel 

 
In 2016, geophysical and geological data were acquired 
during research cruise M127 at the slow-spreading TAG 
Midocean Ridge Segment to detect known and unknown 
seafloor massive sulfides (SMS), and asses the resource 
potential of the ocean floor in this region. The obtained data 
has been previously evaluated using standard geoscientific 
methodologies and now serves as a pilot test case for 
implementing data science methodology in an automatic SMS 
site detection workflow using multivariate geophysical and 
geological data. 
 
In the framework of a Digital Earth Bridging Postdoc, we aim 
to not only implement existing machine learning 
methodologies to predict the resource potential of the 
seafloor, but also obtain a robust quantification of the 
prediction uncertainty. A first milestone needed to achieve 
this overarching goal deals with geophysical/geological data 
acquired on various spatial scales. During the 2nd Digital Earth 
Annual Meeting we presented an initial workflow for 
integrating sparsely and spatially sampled data onto a 
continuously sampled grid using a sequential application of 
fuzzy clustering with random forest regression. 
The spatially sampled data sets (e.g. depth, slope, aspect, 
ruggedness, reduced-to-pole magnetics) were used to create 

a segmented map of the seafloor combining regions of similar 
behavior into common clusters. The pixel fuzziness is then 
used in a random forest regression approach at the defined 
nodes of the sparsely sampled training data set (apparent 
conductivity) to derive a model that allows us to extrapolate 
the sparsely sampled conductivity data onto the local scale of 
our region of interest. Note that apply this approach to 
conductivity data as it is a direct indicator for the presence of 
SMS occurrences on the seafloor.  
Figure 4 illustrates how the sparsely sampled apparent 
conductivity data (left panel) is first applied to derive a model 
capable of predicting values at the defined points of the 
validation data set (central panel), and subsequently applied 
to extrapolate across the entire region of interest (right 
panel). Areas appearing in purple/pink within the vicinity of 
the sparsely sampled data are in good agreement with the 
dimensions of known SMS occurrences. The areas highlighted 
in purple and pink to the lower left side of the right image are 
associated with biases or prediction errors of an insufficient 
regression model and do not coincide with known SMS sites. 
Here, model improvements and a robust assessment of 
uncertainty in our prediction are needed. 
 

 
Figure 4: Example for predicting and extrapolating apparent 

conductivity data using a sequential fuzzy clustering with random 

forest regressor models. 
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Seafloor & Terrain Sampling based on auxiliary 
information: A collection of methods  
Iason-Zois Gazis 
GEOMAR Helmholtz Centre for Ocean Research Kiel 

 
A common concern in scientific research is the amount and 
quality of the available data to derive ‘data-supported’ 
conclusions. In marine research, and particularly in deep-sea 
studies, acquiring the needed amount of data at the required 
position is difficult as it is time consuming (e.g. taking one 
samples in 4km water depth takes 4h) and positioning the 
sampling device has typically an error between 100 and 
10m.As such, deep sea studies typically suffer from the 
scarcity of ground truth samples. Physical samples taken by 
grabs or corers as well as photo/video surveys done by ROV, 
AUV or towed cameras have several constraints, regarding 
weather conditions and limited spatial coverage. A box corer 
taken within 4h only samples 0.25m2 of seafloor Similar to 
marine research, terrestrial studies (e.g. soil mapping) also 
face difficulties in ground truth sampling due to physical (e.g. 
high terrain roughness and steepness), consensual (e.g. 
presence of infrastructures and land ownership) and 
conservation barriers (e.g. protected areas). Since the data 
availability is limited, the quality of the data has increased 
weight.  
 

 
Figure 5: The proposed workflow for the evaluation of different 

sampling methods in seafloor and terrain research. 

 

One milestone in data quality is the ability of the sample 
(physical sample or photo) to adequately represent the 
variable of interest, allowing a rigorous inference about the 
sample composition.  Moreover, the same sample should 
provide information for more than one examined variable. 
and it should be able to capture all environmental variables 
that have a causal effect (direct or indirect) to the examined 
variables. This highlights the importance of sample 
representativeness on a multivariate level. In this 
respect, different sampling strategies have been evaluated: 
random sampling, regular sampling, and feature space 
clustering based on Clustering Large Application method - 
CLARA (Kaufman and Rousseeuw, 1990), and conditional 
Latin Hypercube – cLHS (Minasny & McBratney, 2006). Their 
performance is evaluated based on their ability to a) 
represent a uniform distribution of the examined variables 
(range, mean value etc.), b) to predict the empirical 
distributions of continuous and categorical auxiliary variables, 
c) to keep the correlation structure among the continuous 
auxiliary variables, and d) to consider survey cost and time 
and keep it to a minimum.  
The results show that in small and homogeneous areas all 
method can provide sufficient information, with the regular 

sampling having the maximum geographical coverage.  As 
the seafloor/terrain heterogeneity increases, CLARA 
clustering and cLHS can capture more efficiently the auxiliary 
space, especially when a decreased amount of sampling 
points is used. However, CLARA and cLHS are sensitive to the 
parameters that are used. For CLARA, the number of clusters 
has to be selected based on internal clustering criteria 
(cohesion & separation), evaluated by statistical indexes such 
as Calinski-Harabasz (Calinski & Harabasz, 1974). After an 
optimal clustering has been achieved, a stratified sampling 
among the clusters (based on survey needs) is performed. In 
cLHS the number of iterations and the cooling temperature 
have to be set appropriately during the simulated annealing 
in order to achieve the optimum global solution. 
Nevertheless, the ability of using cost surfaces (e.g. restricted 
areas, or legacy sites) makes the use of cLHS a useful 
decision sampling tool in complex environments or/and in 
repeated monitoring surveys.    
 

 

 
Figure 6: Seafloor future space clustering (CLARA method), based on 

bathymetry and several bathymetric derivatives (e.g. slope, rugosity, 

concavity). On top (black dots) are the sampling locations based on 

stratified sampling among the clusters.  

 


