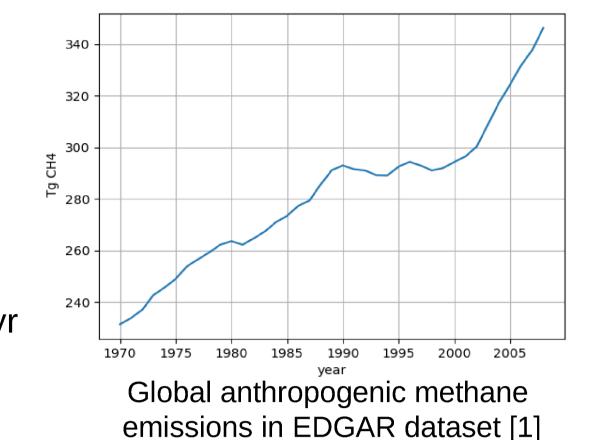


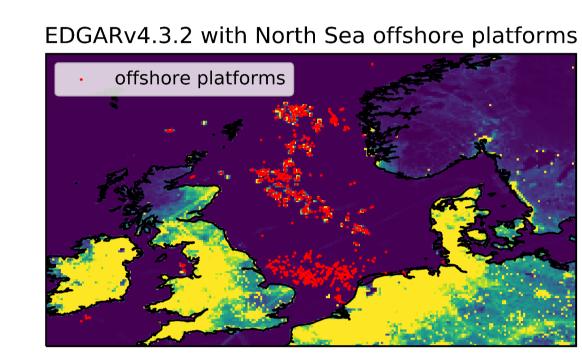
Modelling of the influence of methane emissions in the North Sea region with ICON-ART

0.00020

0.00015

0.00010

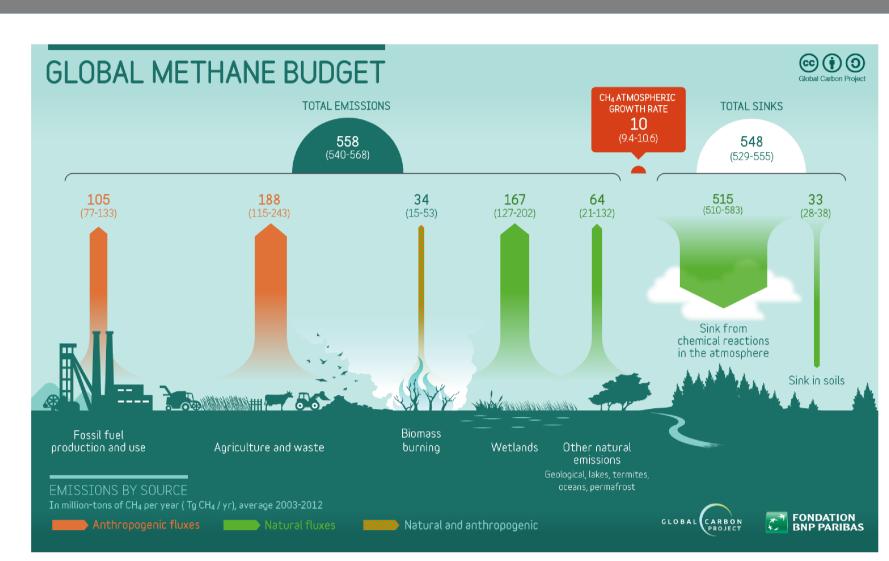

C. Scharun¹, R. Ruhnke¹, H. Guggenberger¹, J. Schröter¹, M. Weimer², P. Braesicke¹


Motivation

Significance of methane (CH₁):

- Second most important greenhouse gas (GHG) after CO2
- Important source for O₃ in the troposphere
- Current increase: ~6 ppbv yr⁻¹
- Short atmospheric lifetime for a GHG: ~10 yr
- Transported over long distances

EDGARv4.3.2


Anthropogenic methane emissions in EDGAR dataset [1] in January 2010, data from ECCAD [7]

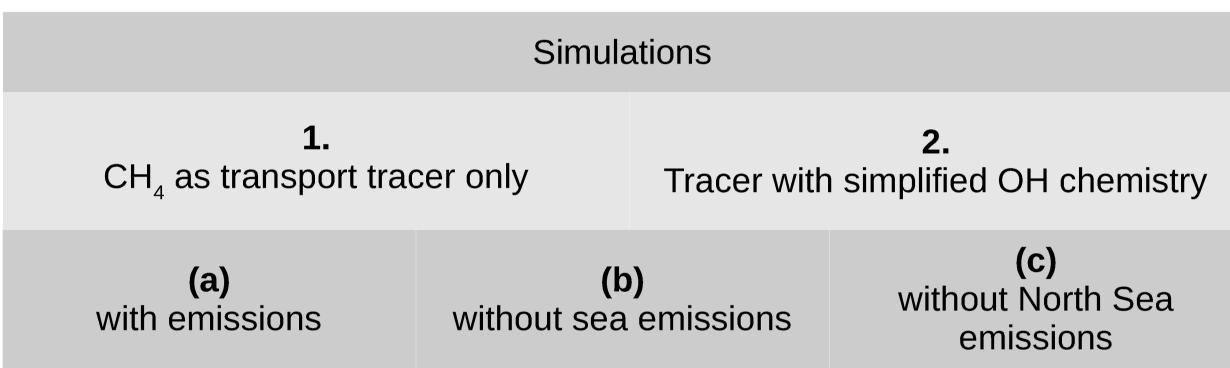
Sources and sinks of methane:

- Uncertainties concerning the global distribution of sources and sinks [2]
- Largest loss of CH₄ due to its
- reaction with the OH radical [3] Discrepancies of bottom-up and

top-down approaches [4]

→ Quantification of processes

The global methane budget – sources and sinks [5]


Methane in the North Sea region:

- Emissions by inactive and active offshore platforms are highly uncertain
- Sea floor measurements near drill holes showed large CH₄ discharges [6]
- High correlation between methane emission and the location of offshore platforms
- Methane emissions caused by ships in the North Sea

The ICON-ART model

ICOsahedral **N**onhydrostatic model with **A**erosols and **R**eactive **T**race gases

Modelling methane 10^{-8} time = 20130128.0time = 20130128.5time = 20130128.52.8 72°N 80°N -197 60°N -193 66°N 66°N - 2.2 40°N 60°N - 1.9 20°N - 1.6 کے 54°N 54°N - 1.3 🔓 -181 힏 48°N 20°S 48°N - 1.0 40°S 42°N 42°N 60°S 36°N 36°N 0.4 80°S -165 0.1 180°E 60°E 180°W 120°W 60°W 120°E 20°E 20°W 10°E 20°W 10°E Methane VMR after 360 days at lowest model level – Difference to model run 1a Methane Volume Mixing Ratio (VMR) after 360 days at lowest model level – transport tracer only (1a) Left: Without sea emissions (1b), Right: Without North Sea emissions (1c) time = 20120413.5time = 20120413.5time = 20120413.52.8 80°N 72°N 72°N - 2.5 -186 60°N 66°N 66°N - 2.2 -183 40°N 60°N 60°N 20°N - 1.6 E 54°N 54°N - 1.3 은 20°S 48°N 48°N -174 - 1.0 40°S 42°N 42°N -171 60°S 36°N - 0.1 120°E

→ Model runs 1a / 2a show higher VMR of methane (~1.4% / ~1.6%) than 1b / 2b and 1c / 2c in the North Sea region after 360 / 69 days at lowest model level

Outlook

- Adjustment of CH₁ emission fluxes from the North Sea
- Investigation of the global impact of adjusted emission fluxes for CH, budget
- ICON-ART "Full chemistry" $CH_A HO_V NO_V O_V$ simulations of the North Sea with a few kilometers horizontal resolution

Methane VMR after 69 days at lowest model level – simplified OH chemistry (2a)

References

[1] G. Janssens-Maenhout et al. Verifying green-house gas emissions. The National Academies of Sciences, 1, 132-133, 2010.

Methane VMR after 69 days at lowest model level – Difference to model run 2a

Left: Without sea emissions (2b), Right: Without North Sea emissions (2c)

- [2] M. Saunois et al. The global methane budget 2000–2012. Earth System Science Data, 8, 697–751, 2016a.
- [3] S. Kirschke et al. Three decades of global methane sources and sinks. Nature Geoscience, 6:813–823, 2013.
- [4] M. A. K. Khalil. Atmospheric Methane Its Role in the Global Environment. Springer-Verlag, 2000. [5] http://www.globalcarbonproject.org/methanebudget/16/files/MethaneInfographic2016.png
- [6] J. Greinert et al. Cruise Report. GEOMAR Helmholtz-Ceter for Ocean Research Kiel, 2018. [7] ECCAD. Emission of atmospheric compounds and compilation of ancillary data. http://eccad.aeris-data.fr

christian.scharun@kit.edu