

Making use of SBP and Towed Magnetics Data

J. Felipe Barradas Tine Missiaen Thomas Mestdagh

Aline Rensor

Outline

- 1. Testing **sub-bottom profiling (SBP)** for munition detection
 - Working principle
 - Data acquired
 - System modes
 - Detection ranges
 - Amplitude analysis

- 2. Testing **towed magnetics** for munition detection
 - Working principle
 - Data acquired
 - Mapping results
 - Sensitivity
 - Comparison with SBP

3. Multi-sensor integration

4. Setting up an artificial intelligence (AI) workflow for SBP data

Sub-Bottom Profiler (SBP)

3 Surveys

June 2020: Kolberger Heide

July 2020: Lubeck Bay

August 2020: Helgoland

Innomar SES-2000 quattro

Components:

- + Motion sensor
- + GPS

Transmitting

¬ Receiving

Dual Beam Mode

Quadruple Beam Mode

Kolberger Heide, RV Littorina (June 2020) 5

Which mode is the best?

→ it depends on:

Which mode is the best?

15 m

Dual Beam Mode

Quadruple Beam Mode

Which mode is the best?

Single Beam Mode

Detection ranges

W

Detection ranges

MBES+SBP track

SBP profile

N N 10m

Topographic profile W -14.4 Depth [m] -15.6 Offset [m] 2.1 m 1.2 m Low amplitude High amplitude Low amplitude High amplitude Depth [m]

Amplitude analysis

Underwater photos taken by Jana Ulrich

Magnetometry/Gradiometry

Magnetics: MagWing®

Kolberger Heide Survey Results

Vertical magnetic gradient Colour scale -500 to + 500 nT/m Vertical magnetic gradient Colour scale -2000 to + 2000 nT/m

SBP tracks
MBES
Magnetic data

MBES + Photomosaic

SBP Profile

MBES + Magnetics + SBP tracks

Initial steps in automated target picking

© Outlook

3D example: Archaeological site at the Belgian coast reprocessed and modeled

Conclusions

Lessons learned

- The expression of munition at and below the seafloor in SBP data (influence of system mode, governing factors)
- The limitations of SBP, and how they can be overcome by integrating other methods (MBES, magnetics)

Ongoing work

- Developing an AI feeding workflow for automated munition detection in SBP data

Future work

- From 2D sub-bottom profiles to 3D volumes and areas with buried targets.

