Q
GEOMAR

Helmhaltz-Zentrum flr 0zeanforschung Kiel

Tutorial

Git - Version Control System

Groups Activity Milestones Snippets

Projects

er by name Last updated

Your projects Starred projects Explore projects

D realtime / data *0 &
Project structure containing data files updated a week ago
*0 @&
U dship / underway updated a month ago
A proxsys / administration *2 &
Collect all non-research data stuff here for ProxSys administative and documentation purposes updated 2 weeks ago
B dm / biigle *0 &
Biigle 2 app directory as found on dm-annotate-0:/srv/apps/biigle-distribution updated 2 weeks ago
A dship / actionlog *0 &
Anything related to mail support, i garding DShip ActionLog in version 3 updated a week ago
c python / conda_environments © %2 ©
Conda environments updated 4 weeks ago
*0 &
dm / di
D 7 gecH updated a week ago
R dm / remote_notebooks *0 &
Template for running Jupyter Notebooks on a remote server via intranet updated a week ago
M dm / maps_docu Ol]
Contains user documentation for dm/maps updated a week ago
E data / documentation / examples *0 ©
Examples illustrating the use of the central data repos. updated 2 weeks ago

Contact

Data Management

Adress: GEOMAR Helmholtz Centre for Ocean Research Kiel
Wischhofstr. 1-3
24148 Kiel | Germany

Phone: 0431/ 600 2294

E-Mail: datamanagement@geomar.de

mailto:datamanagement@geomar.de

CONTENT

Introduction 2
1. Installing Git and get access to GEOMAR GitLab Server 2
1.1 Have access to GEOMAR GitLab Server and create a new Projectccccvvveeeeiiiiciiiieeee e 2
1.2 Generating a SSH key for GEOMAR GitLab SEIVETuuiiiiiiiiiiiiiieeee e e e 5

2. Understanding Git 5
2.1 Version COoNtrol WIth Git.........cooiiiii et e e e e e e st r e e e e e s e e sanbeaeeaaaeesaannnes 5
2.2 The long history of Version CONtrol SYSIEMSciiiiiiiieiiiiiie it seaeee s 7

3. Getting started - Setup 8
3.1 Setup 0N COMMEANG TN ...eiiiii ettt ettt ettt e s bt e bt e e e s anbr e e e s aanneee s 8

R I €10] BT 11T o1 (38 (o] | ST PPRT 9
I R To 1N (ol T I (=T PP PPPPPPPPPPPPPPPPPPPIO: 9
3.2.2 GIEHUD DESKIOP ..ttt e e a et e e sk e e e bt e e et e e e b e e e e ab e e e e e e s 9
B2 B €11 (1 = 1] PR 9
0 N o 4 (o] Y= 1 | S PTPR 11

4. Getting started with first repository 11
5. Managing research data (and large binary files) with Git LFS (Large File Storage) 14
B.AInstalling Git LES ... 15
5.2 Create @ NeW FEPOSITONY ...ccceeee e 15
5.3 ClONING @ MEPOSITONY.....cce i 15
5.4 Tracking files With GIt LFS.........coo 16
5.5 Controlling when to download large files...........oo 17
5.5.1 git Ifs commands and CONfIQUIALIONScoouiiiiiiiiii e 17
5.5.2 Skip download globally on the CHENT...........oueiii e 17
5.5.3 Skip download for @ach OPEIALIONeeiiiiiii et 17
5.5.4 CONFIQUIE FEPOSITONY ..ottt e ettt ettt e e e e ettt e e e e e s e bbbttt e e e e e e e s b bbb e e e e e e s e nabbbeeeeeeeeansbbeeeeaeeaaannnn 18
5.5.5 Downloading SKIPPEA filESeeiiiiie e 18

5.6 Migrating existing repository datato LFS ... 18

6. Using Git to share code and data 19
7. Using Git to explore history aka provenance 20
8. Advanced usage of Git - branching and merging 22
9. Advanced usage of Git - keep a Git repository as a subdirectory 22
0.1 SUBMOAUIES....... ettt e oottt et e e e e e s bbbt bt et e e e e e e anbb e b e e e e e e e e aannbrnneeas 22
9.2 Cloning a Project with SUBMOAUIES...........coooiii 23

Introduction

Collaborate on code and research data with the Version Control System Git. Manage Git
repositories with fine grained access controls and keep your code and your research data
secure. Perform code and research data reviews and enhance collaboration with support even
for large files (Git-LFS). Each project can track issues, utilize individual wiki and many more
features out-of-the-box.

In this tutorial you will find information about how to install git, the general understanding of Git
and Git (Large file storage) as well as instructions for the basic usage of the versioning system.
We highly recommend to work with the command line when using Git, that is why this tutorial is
focused on those workflows, but we also listed some common GUI-Clients for those who are
not used to work with the command line. GUI-Clients make common tasks and features of git
much easier, but as soon as you need to do some more special tasks (git has a lot of special
features!), the GUI-Client will no longer work. So we recommend to get experienced with the
command line.

1. Installing Git and get access to GEOMAR GitLab Server

When you use Git for the first time, you need to install and set up a few things.
Install Git on Linux, Mac or Windows: https://git-scm.com/downloads

1.1 Have access to GEOMAR GitLab Server and create a new Project

To use the GEOMAR GitLab Server to share repositores you need an account on
https://git.geomar.de. Please use your login credentials as for data management's
https://portal.geomar.de and start right away with your first project in your personal name
space. If your login fails, you need to reset/initialise your Password. Go to
https://portal.geomar.de/web/data-management/nhome and follow the instructions there or
contact the GEOMAR data management team.

1 LogintoGeomar 6s Gi thipa/lyit.ceenarvde r
1 In your dashboard, click the green "New project" button or use the plus icon in the
upper right corner of the navigation bar to create a new project, e.g. planets.

GitLab Groups Activity Milestones Snippets

Projects

Your projects Starred projects Explore projects Last updated ‘ New project ’

realtime [data *0 &
Project structure containing data files updated a week ago

*0 &

U dship/underway updated a month ago

proxsys [administration *2 @
Collect all non-research data stuff here for ProxSys administative and documentation purposes updated 2 weeks ago

1 This opens the "New project” page.

https://git-scm.com/downloads
https://git.geomar.de/
https://portal.geomar.de/
https://portal.geomar.de/web/data-management/home
https://git.geomar.de/

— o . "
GitLab Projects~ Groups Activity Milestones Snippets B+ Search

Projects

New project Create from template @ Import project from

Create or Import your project from popular D r (o e OGitHub ®Bitbucket & GitLab.com G Google Code
Git services 3 8 X R

Blank Ruby on Rails Spring NodeJS Express
git Repo by URL & GitLab export

Project path Project name

Want to house several dependent projects under the same namespace? Create a group

Project description (optional)

Visibility Level @
O @ private
Project access must be granted explicitly to each user.

U Internal
The project can be accessed by any logged in user.

@ public
Public visibility has been restricted by the administrator.

q Create project Cancel

1 Enter the name of your project in the Project name field. If you have a project in a
different repository, you can import it by clicking on "Import project from" button. The
"Project description (optional)" field enables you to enter a description for your
project's dashboard, which will help others understand what your project is about.
Changing the Visibility Level modifies the project's viewing and access rights for users.

T Click "Create project"”.

1 As soon as the project is created, Gitlab displays a page with a URL and some
information on how to configure your local repository:

Gitlab Projects v

B biaets Lisa Pagéalonga » planets > Detals
€ Overview Project 'planets' was successfully created.
Details
Activity p
Cycle Analytics
O 1ssves 0 planets &
0 Star 0 SSH~ qitggit.geomar.de:lisa-paglial It 4+~ A Global ~
O wii The repository for this project is empty
If you already have files you can push them using command line instructions below.
& Snippet:
Otherwise you can start with adding a README, a LICENSE, or a gitignore to this project
£ Settings You will need to be owner or have the master permission level for the initial push, as the master branch is automatically protected.
Command line instructions
Git global setup
git config —global isa Paglialonga"
git config —global “Ipaglialongaggeonar, de'
Create a new repository
paglialonga/planets.g
& Collapse sidebar

Existing folder

Your projects in GitLab can be organized in two different ways: under your own
namespace for single projects, such as your-name/project-1 or under groups. If you organise
your projects under a group, it works like a folder. You can manage your group members'
permissions and access to the projects.

To create a group:

1 Once in your groups dashboard, click on New group.

GitLab Pro scts v m Acti ity Milestones Snippets [+ I Search

Yourgroups Explore public groups

&\ dataas Owner

rm N 8 14 (4
= Version-Controlled Research Data at Geomar Start here: [d: 1(https://git.geomar. n26 @ e =
] @ python as Reporter R6 W20 U @
auv-abyss as Master
=
- Git repository for AUV Team 4 @7 &

Fill out the information needed:

1. Set the "Group path" which will be the namespace under which your projects will be
hosted.

2. The "Group name" will populate with the path. Optionally, you can change it. This is the
name that will display in the group views.

3. Optionally, you can add a description so that others can briefly understand what this
group is about.

4. Optionally, choose an avatar for your project.

5. Choose the visibility level.

Gitlab Projects~ Groups Activity Milestones Snippets v Search
New Group

Group path https:/jgit.geomar.de/

Group name
Description

Group avatar % Chaose File ... File name...

The maximum file size allowed is 200KB.
Visibility Level @ & rprivate

The group and its projects can only be viewed by members

© 0 internal
The group and any Internal projects can be viewed by any logged in user.

@ Public
Public visibility has been restricted by the administrator.

+ Agroup is a collection of several projects
+ Members of & group may only view projects they have permissicn to access
+ Group project URLs are prefixed with the group namespace

+ Existing projects may be moved into a group

1 Finally, click the Create group button.
Add a new project to a group
There are two different ways to add a new project to a group:

1 Select a group and then click on the New project button.

GitLab Projects v Groups Activity Milestones Snippets B3~ Thisgroup Search a 0 N e .

dm
£ Overview
Details
Activity dmoe

Data management grou
7 Issues = 9 group

Leave group A Global ~
11 Merge Requests L]

& Members Projects Subgroups Last updated

data a
Project structure containing data files updated a week ago

You can then continue on creating a project.

1 While you are creating a project, select a group hamespace you've already created from
the dropdown menu.

1.2 Generating a SSH key for GEOMAR GitLab Server

Git is a distributed version control system, which means you can work locally but you can also
share or "push" your changes to other servers. Before you can push your changes to a GitLab
Server you need a secure communication channel for sharing information.

The SSH protocol provides this security and allows you to authenticate to the GitLab remote
server without supplying your username or password each time.

For a more detailed explanation of how the SSH protocol works, we advise you to read this nice
tutorial by DigitalOcean: hitps://www.digitalocean.com/community/tutorials/understanding-the-
ssh-encryption-and-connection-process

Please follow the instructions on https://git.geomar.de/help/ssh/README.md - generating-a-
new-ssh-key-pair to add a key allowing for password-less work.

2. Understanding Git

2.1 Version Control with Git

Version control can be used to keep track of wha
collaborating with other people, automated version control is much better than this situation:

https://www.digitalocean.com/community/tutorials/understanding-the-ssh-encryption-and-connection-process
https://www.digitalocean.com/community/tutorials/understanding-the-ssh-encryption-and-connection-process
https://git.geomar.de/help/ssh/README.md#generating-a-new-ssh-key-pair
https://git.geomar.de/help/ssh/README.md#generating-a-new-ssh-key-pair

"FINAL doc

CENAL.doc !

1 7
INAL _rev.6.COMMENTS.d FINAL_rev.8.commentsS.
FINAL _rev.6.COMMENTS. doc el il

JORGE CHAM ©2012

: b
FINAL _rev.18.comments?. FINAL _rev.22. comme"nfy{q'
corrections?.MORE.30.doC corrections. (0. £@$%4WHYDID

WWW.PHRCOMICS. COM

Piled Higher and Deeperdo by Jorge Cham
(Source: http://www.phdcomics.com)

Webve all been in this situation bef oridenticali t S ee
versions of the same document. Some word processors let us deal with this a little better, such
as Microsoft Wordds ATrack Changesd or Google Do

Version control systems start with a base version of the document and then save just the
changes you made at each step of the way. You can think of it as a tape: if you rewind the tape
and start at the base document, then you can play back each change and end up with your
latest version.

Once you think of changes as separate from the document itself, you can then think about
Aplaying backod different sets of changes onto th
of the document. For example, two users can make independent sets of changes based on the

same document.

I f t h e conflices,ry@urcdh even play two sets of changes onto the same base document.

A version control system is a tool that keeps track of these changes and helps to version and
merge files. It allows you to decide which changes make up the next version, called a commit,
and keeps useful metadata about them. The complete history of commits for a particular
project and their metadata make up a repository. Repositories can be kept in sync across
different computers facilitating collaboration among different people.

2.2 The long history of Version Control Systems

Automated version control systems are nothing new. Tools like RCS, CVS, or Subversion have
been around since the early 1980s and are used by many large companies. However, many of
these are now becoming considered as legacy systems due to various limitations in their
capabilities. In particular, the more modern systems, such as Git and Mercurial are distributed,
meaning that they do not need a centralized server to host the repository. These modern
systems also include powerful merging tools that make it possible for multiple authors to work
within the same files concurrently.

3. Getting started - Setup

3.1 Setup on command line

Below are a few examples of configurations you will set as you get started with Git: your name
and email address, to colorize your output, your preferred text editor, and your global settings
(i.e. for every project). On a command line, Git commands are written as git verb, where verb is
what we actually want to do.

So here is how you set up Git:

1 ogit config -- global user .name ™ (enter your name between the marks)
1 ogit config -- global wuser .email ™ (enter your e-mail adress between the marks)
1 ogit config -- global color .ui "auto"

This user name and email will be associated with your subsequent Git activity, which means
that any changes pushed to GitHub (http://github.com/), BitBucket (https://bitbucket.org/),
GitLab (http://gitlab.com/) or another Git host server will include this information. The
commands we just ran above only need to be run once: the flag --global tells Git to use the
settings for every project, in your user account, on this computer.

You also have to set up your favorite text editor, following this list to choose one:

Editor Configuration command:

1 Atom: git config -- global core.editor "atom -- wait"

1 nano: git config -- global core.editor "nano -w"

1 Text Wrangler (Mac): git config -- global core.editor "edit - w"

1 Sublime Text (Mac): git config -- global core.editor "subl -n -w"

1 Sublime Text (Win, 32-bit install): git confi g -- global core.editor "c:/program
files (x86)/ sublime text 3/sublime_text.exe' -w"

1 Sublime Text (Win, 64-bit install): git config -- global core.editor "c:/program
files/sublime text 3/sublime_text.exe' -w"

1 Notepad++ (Win, 32-bit install): git config -- global core.editor "c:/program
files (x86)/Notepad++/notepad++.exe’ - multilnst - notabbar - nosession -
noPlugin”

7 Notepad++ (Win, 64-bit install): git config -- global core.editor "c:/program
files/Notepad++/notepad++.exe’ - multilnst - notabbar - nosession -
noPlugin”

1 Kate (Linux): git config -- global core.editor "kate"

1 Gedit (Linux): git config -- global core.editor "gedit -s -w"

71 Scratch (Linux): git config -- global core.editor "scratch - text - editor"

i emacs: git config -- global core.editor "emacs"

9 vim:git confi g -- global core.editor "vim

Note: vim is the default editorformany programs, if you havendt used

a session, type Esc then :q! and Enter.

You can check your settings at any time: git config T list

\'

http://github.com/
https://bitbucket.org/
http://gitlab.com/

3.2 GUI-Clients for Git

We highly recommend to work with the command line when using Git, that is why this tutorial is
focused on those workflows, but we also listed some common GUI-Clients for those who are
not used to work with the command line. GUI-Clients make common tasks and features of Git
much easier, but as soon as you need to do some more special tasks (git has a lot of special
features!), the GUI-Client will no longer work. So we recommend to get experienced with the
command line.

Here the most common open-source Git-Clients are listed. A good overview of all GUI-Clients
gives this website.

3.2.1 Source-Tree

1 For Mac & Windows
1 Extensive tool, but also needs training time- so it is not suitable for beginners
9 For users who want to switch from the command line it is the best choice
1 It offers many advanced features (Git Large File Support, Submodules...)
1 Free download: https://www.sourcetreeapp.com/
1 Source-Tree Tutorial
o0 e sourcetree-website (Git)

y / o o) <0 7S
© & ® AN 6 €&
Commit Pull Push Branch Merge Sholve Show In Finder Terminal Settings
L: WORKSPACE All Branches Show Remote Branches Ancestor Order Jump to: ‘

Yo statos Graph Commit Author Description Dato
(o] b7358c7 Rahul Chha.. [rmastor [rorgin'mastor 7 origivHEAD Removing ol.. Mar 3, 2016, 11:.. :

l\ bdb8bef Rahyl Chhab.. Merged in update-google-verification (pull request #14) Feb 18, 2016, 1:3...
Search o dte975¢ Tyler Tadel. s originupdate-google-verfication Update google verificati.. Feb 11, 2016, 2:2...

0 .[3bc3290 Tyler Tadej.. Replace ocutdated Atlassian logo in footer with base-64 en.. Feb 11, 2016, 2:1..
47 BRANCHES : dbad719 Tyler Tadej.. Add gitignore Feb 11, 2016, 1:3...
— - H67b4s Mike Minns... Updated Mac min-spec to 10.10 Feb 15, 2016, 1.

| %] BOOKMARKS | Y D . 5 3
‘ ° 7243288 Michael Min.. Merged in hero_images (pull request #13) Feb 15, 2016, 10:...
& ios o 246catt Joel Unger.. [r oeiginhero_images [r hero_images Used Tinypng to €. Feb 11, 2016, 3:3...
e 9d9438¢c Joel Unger.. Replacing hero images with new version of SourceTree Feb 9, 2016, 2:59...
O oeiore el ce75b63 Michael Min_. Merged in bug/date-https (pull request #12) Feb 15, 2016, 10-...
= o J | 3 853670b Patrick Tho.. [originbug/date-hiips fixed date and hitps errors Jan 7, 2016, 12:2...
Rl isisciCen .»*‘J 419b557 Joo!l Unger.. New Favicon Feb 8, 2016, 3:55..
e J 3840605 Rahul Chhab.. [r originsearch-console-access search console google ver.. Feb 3, 2016, 2:09...
6fad7a9 Mike Minns... updated to move supported version to OSX 10.9+ Dec 15, 2015, 2:0...

Bdd87bb Mike Minns... remove extra , when a fine is skipped due to empty server Nov 23, 2015, 2:2...
faa196e Mike Minns.. Skip records with empty server/user id as gas rejects them Nowv 23, 2015, 2:1..

o
|

2

= |
[susrerosiTORiES |
L d

|

k]

l Ocdfe96 Mike Minns.., corrected paths after merge Nov 23, 2015, 2:0...

(Screenshot: SourceTree)

3.2.2 GitHub Desktop

For Mac & Windows
GitHub Desktop is the perfect tool for beginners

1

1

1 It's minimalized on the key features of git.

9 You can create repositories, copy or create a new branch, fill the created branch with
commits and merge again or create a pull request.

1 You get all the necessary information and you can also compare the branch with an
integrated Diff-Tool.

1 Free download: https://desktop.github.com/

1 GitHub Desktop Tutorial

https://git-scm.com/downloads/guis
https://www.sourcetreeapp.com/
https://confluence.atlassian.com/get-started-with-sourcetree?_ga=2.103900352.1583876533.1513674706-970433492.1513674706
https://www.sourcetreeapp.com/
https://desktop.github.com/
https://help.github.com/desktop/

i & Publish branch

ﬁroﬁress-réponlng

Changes @ History app/src/uifapp.tsx

1 changed file

956

app/src/uifapp.tsx const state = selection.state

const remoteName = state.remote ? state.remote.name : null

const progress = state.pushProgress || state.pullProgress

return <PushPullButton

dispatcher={this.props.dispatcher}

repository={selection.repository}

-963,7 +965,7 @@ export class App extenc

remoteName={remoteName}

lastFetched={state. lastFetched}
networkActionInProgress={state.pushPullInProgress}
progress={state.pushProgress}

progress={progress}

B Show progress in toolbar

Commit to progress-reporting

(Screenshot: GitHub Desktop)

3.2.3 GitKraken

For Linux, Mac, Windows

Repository Management

GitLab, GitHub and Bitbucket integration

Drag & Drop for simplifing commands like merge, push, rebase and more
Git Large File Support (GitLFS) and features like submodules

Git Hooks Support and Git Flow Support to manage branches efficently
Free download: https://www.qgitkraken.com/download

GitKraken Tutorial

R

Show All v master hh & O Merge pull reque...
Remove “options" being optional on *Stash
and "Stash.pop®

Q Reference#rename test
] LOCAL 717 feature/example Q T Commit

i T Merge pull req...
async-index ge p! 9 q} John Haley commit: 6ff12e

feature . Use example.com domal authored 3/1/2017 @ 6:10 AM parent: ad991f

example fix-missing-frees h & Try freeing alloced fields ap. o~

- ~| 1 modified
find-similar-spec ‘ Remove “options being
b how-to-rebase ‘ Bump t0 0.1 amo Name a Full Path
£ U master —
‘ Merge pull request #1224 f... [~] CHANGELOG.md

merge-conflict
thread-safety ‘ Merge pull request #1232 f...

@& REMOTE ¢ | Merge pull request #1208 ...
& jdgarcia X Should test everything, not ...
discard-lines ¢ ‘ Merge pull request #1238 f...

find-similar-spec ‘ Merge pull request #1236 f...

master
‘ Merge pull request #1234 f...
& origin
Use wider int to calculate th...
emscripten
emscripten-round-two ¢ ‘ e pull request #1209 f...

fix-missing-frees ¢ ‘ Merge pull request #1223 f...
free-raw-on-demand e et e ‘ Merge pull request #1241 f...

generation-improvem: b I Add tests back in for 32-bit ...

handle-truthy-in-v8
andle-trutny-in-vi b | Remove “sudo: required” f...

maint

Remove nw.js instructions
0.4

(Screenshot: GitKraken)

10

https://desktop.github.com/
https://www.gitkraken.com/download
https://www.gitkraken.com/features
https://www.gitkraken.com/features

3.2.4 TortoiseGit

! For Windows

1 Windows Explorer integration (as extension): All Git commands are available from the
explorer context menu. TortoiseGit adds its own submenu. TortoiseGit provides icon
overlays that indicate the status of Git working trees and files.

1 Supports you by regular tasks, such as committing, showing logs, diffing two versions,
creating branches and tags...

1 Free download: https://tortoiseqgit.org/

1 TortoiseGit Tutorial

T Overlay icons in explorer indicating the status of files and folders

: e o & & & €

A Git Sync.. normal assume-valid added normal.cpp assume-valid.cpp added. cpp
@A Git Commit -> "master”...
TortoiseGit » @ pull. o aﬂ gﬂ .«ﬂ
W Fetch... x
Restore previous versions modified deleted ignored modified. cpp deleted.cpp ignored.cpp
- A Push...
Include in library 3
&= Showlog
Send te > AR ++ =22y 4
& ShowReflog I] (7] g j 2
e 3@, Browse Reference conflicted skip-worktree non-versioned conflicted.cpp skip-workiree.cpp non-versioned.cpp
Copy 12, Repo-browser
Create shortcut Bz, Check for modifications
Delete % “Rebase..
Eepatee Bisect start
Properties £ Resolve.
¥} Revert..
Bf Clean up...
B Switch/Checkout...
)’ Merge...
T Create Branch...
T Create Tag...
By Export..
@ Add..
@ Submodule Add
78 Create Patch Serial...
% Apply Patch Serial...
?f*\ Settings
Y Help
63 About

(Screenshots: TortoiseGit)

4. Getting started with first repository

Once Git is configured, you can start wusing
local computer for your work and then move into that directory.

1 nkdir planets (creating a repository called planets)
T cd planets (switch into this directory)

Then you tell Git to make planets a git repository, a place where Git can store versions of your
files:

1 gt init (tell Git to make your directory a git repository)

11

https://tortoisegit.org/
https://tortoisegit.org/docs/
https://tortoisegit.org/about/screenshots/#Explorer_integration

If you use the command Is t o show the directoryd6s content s,

changed:
T Is

But if we add the -a flag to show everything, we can see that Git has created a hidden directory
within planets called .qgit:

f Is -a

Git stores information about the project in this special sub-directory. If you ever delete it, you
wi || | ose histre proj ect ds

Tracking Changes

You can check that everything is set up correctly by asking Git to tell you the status of your
project:
1 ogit status

The first two statements tell us where you are (branch master and initial commit). The
Auntr ackmessagémeé¢ 2s® t hat there is a file in t
of. You can tell Git to track a file (here e.g. mars.txt) by using git add

1 ogit add mars. txt

Git now knows that ités supposed to keecphpanges ac k

as a commit yet. For that you need to run one more command git commit . As especially in
collaborative projects, it is a good idea to provide detailed commit messages, so add a
message to the command.

T git commit -m "Add the file mars.txt to reposito ry"

When you run git commit , Git takes everything you have told to save by using gitadd and
stores a copy permanently inside the special .git directory. This permanent copy is called a
commit (or revision) and its short identifier is e.g. f22b25e (your commit has another identifier).

Run git status now:
1 gt status

...it tells us everything is up to date. The command git status gives you also information
about if a file it already knows has been modified. The output will be like the following:

On branch master
Changes not staged for commit: (use "git add ..." to update what will be committed)

(use "git checkout -- .."to discard changes in working directory)
modified: mars.txt
no changes added to commit (use " git add" and/or "git commit -a"

12

di

(0]

The last |ine is the key phrase: ino changes add
you havendt t ol tdack@bse chgngas (whichrydu da vath gi tadd) nor have
you saved them (which you do with git commit)

.git @

git add git commit

staging area

If you think of Git as taking snapshots of changes over the life of a project, gitadd specifies
what will go in a snapshot (putting things in the staging area), and git commit then actually
takes the snapshot, and makes a permanent record of it (as a commit).

I f you want to know what youbve done recently, vy
using git log

1 gt log
git log lists all commits made to a repository in reverse chronological order. The listing for
each commit includes the commités full identifie
short identifier printed by the git commit command earlier), the commitd

created, and the log message Git was given when the commit was created.

It is good practice to always review your changes before saving them. You do this using git
diff . This shows you the differences between the current state of the file and the most
recently saved version:

T gt diff

- The first line tells you that Git is producing output similar to the Unix diff command
comparing the old and new versions of the file.

- The second line tells exactly which versions of the file Git is comparing; df0654a and
315bf3a are unique computer-generated labels for those versions.

- The remaining lines are the most interesting, they show you the actual differences and
the lines on which they occur. In particular, the + marker in the first column shows where
you added a line.

If you have files that you do not want Git to track, like backup files created the editor or
intermediate files created during data analysis, you have to tell Git to ignore them. Putting these
files under version control woul d abngthemalllssted e o f
could distract you from changes that actually matter. You do this by creating a file in the root
directory of your project called .gitignore. Write in this file these patterns which should be
ignored by Git (e.g. *.dat results/ --> These patterns tell Git to ignore any file whose name ends

13

in .dat and everything in the results directory. If any of these files were already being tracked,
Git would continue to track them.):

1 nano . gitignore

Everyone youdre shar i ngrobgblywantto ignpre thd sanoerthjngswhiatt h wi |
youdre ignoring. .gfgnoradd and commi't

If you added a file (e.g. mars.txt) to the staging area by mistake and you want to reverse it, you
have to use the command git reset :

1 git reset mars.txt (getfile back from staging area to working directory)

If you want to delete a file (e.g. mars.txt) from the working directory and add the deletion to the
staging area use the command git rm:

T git rm mars. txt
T gt commit -m "delete mars.txt"

But if you want to remove the file only from the Git repository and not from the filesystem, use:

 ogit rm -- cached mars. txt

5. Managing research data (and large binary files) with Git LFS (Large
File Storage)

Managing large files such as audio, video and graphics files has always been one of the
shortcomings of Git. The general recommendation is to not have Git repositories larger than
1GB to preserve performance. For projects containing large files, particularly large files that are
modified regularly, the git cloning process can take a huge amount of time, as every version of
every file has to be downloaded by the client. Git LFS (Large File Storage) is a Git extension
developed by Atlassian, GitHub, and a few other open source contributors, that reduces the
impact of large files in your repository by downloading the relevant versions of them lazily.
Specifically, large files are downloaded during the checkout process rather than during cloning
or fetching. Git LFS replaces large files such as audio samples, videos, datasets, and graphics
with text pointers inside Git, while storing the file contents on a remote server like GitLab.
(Source: https://www.atlassian.com/qgit/tutorials/qgit-Ifs)

Large File Storage

s
)

file.psd

DI

file.psd

[

14

https://www.atlassian.com/git/tutorials/git-lfs

Features

1 Large file versioning: Version large files 8 even those as large as a couple GB in size
o0 with Git.

1 More repository space: Host more in your Git repositories. External file storage makes
it easy to keep your repository at a manageable size.

1 Faster cloning and fetching: Download less data. This means faster cloning and
fetching from repositories that deal with large files.

1 Same Git workflow: Work like you always do on Git 8 no need for additional
commands, secondary storage systems, or toolsets.

1 Same access controls and permissions: Keep the same access controls and
permissions for large files as the rest of your Git repository when working with a remote
host like GitHub. (Source: https://qit-Ifs.github.com/)

5.1 Installing Git LFS

Download git Ifs at https://git-Ifs.github.com/ and install the Git command line extension. You
only have to set up Git LFS once.

T it Ifs install

5.2 Create a new repository

Setting up a git Ifs repository works the same as before with the command git init. So you tell
Git to make your directory called e.g planets a git repository, a place where Git can store
versions of our files:

1 mkdir planets (creating a repository called planets)
1 cd planets (switch into this directory)
T it init (tell Git to make your directory a git repository)

5.3 Cloning a repository

Cloning the repository works the same as before. Git automatically detects the LFS-tracked files
and clones them via HTTP. If you performed the git clone command with a SSH URL, you have
to enter your GitLab credentials for HTTP authentication: e.g. git clone
git@gitlab.example.com:group/project.git

If you already cloned the repository and you want to get the latest LFS object that are on the
remote repository, e.g. from branch master: git clone (git @git.geomar.de : <your -
username >/ planets . git (Make sure to use the URL for your repository rather than the
dummy-one provided here).

If you already cloned the repository and you want to get the latest LFS object that are on the
remote repository, e.g. from branch master:

it Ifs fetch master

15

https://git-lfs.github.com/
https://git-lfs.github.com/

5.4 Tracking files with Git LFS

Now you are going to decide that e.g. *.csv files are large files that you want git-Ifs to track.
Tracking means that in subsequent commits, these files will now be LFS files.

Note: This does NOT mean that versions of the files in previous commits will be
converted. That involves a process commonly known as "rewriting history" and is
described in the migration chapter 5.6.

You do this by setting a track pattern, using the git Ifs track command:
1 it Ifs track ".csv"
You can also manage subset of files (e.g. images/*.png)
M it Ifs track “images/*.png"
...0r even entire directories (e.g. images)
1 gt Ifs track ‘“images/"
To see which file types are managed by git Ifs, just run git Ifs track:
T git Ifs track

Next, you need to add .gitattributes to your git repository. git Ifs track stores the tracked
files patterns in .gitattributes. When the repo is cloned, the track files patterns are preserved.
Since the bin files were added before Git LFS was tracking e.g. .csv files, they need to be
added again to the Git index: Make sure that *.gitattributes is tracked by git. Otherwise Git LFS
will not be working properly for people cloning the project.

1 o9git add . gitattributes "*.csv"

If you know which files you want to track, you have to add and commit them to the repository
with gitadd and git commit

1 git add .
f git commit -m "Add new large assets"”

If you push your changes to your git remote (git push), git Ifs intercepts the files and sents
them to the git Ifs server. It creates a small pointer file in your repository, which is used for
linking to the acutal files on the git Ifs server.

1 gt push
If you want to know which specific files git Ifs is tracking, just run:
T git Ifs Is -files (if you haven't commited your files this list is currently empty. It is

because technically the file isn't an Ifs object until after you commit it)

16

5.5 Controlling when to download large files

By default, git clone for a Ifs-enabled repository will download the latest version of the files
tracked with Ifs. This is OK for projects with only a few large files, but for datasets with
gigabytes or even terrabytes of data, this is unacceptable.

Fortunately, there are number of ways to prevent git Ifs from automatically downloading
tracked files.

5.5.1 git Ifs commands and configurations

Git Ifs extends git by adding special versions of git commands, e.g. git Ifs clone and git
Ifs pull instead of git clone and git pull . For the most part, the commands are
interchangeable, but in some cases (such as the ones described below), the Ifs versions
provide access to Ifs specific options. Using git Ifs clone and git Ifs pull makes
sens in most cases, since they provide a smarter mechanism for downloading Ifs tracked files
(e.g. by starting multiple parrallel downloads).

5.5.2 Skip download globally on the client

If you never want to automatically download tracked Ifs files, you can pass this as an option

when initialising git Ifs: git Ifs install -- skip - smudge. In git Ifs terms, 'smudge’ is the
process of getting the actual data for the pointers that are stored locally. By installing git Ifs with
the --skip-smudge option, you are setting the filter smudge = git - Ifssmudge -- skip --

%f in the global .gitconfig file in your home directory.

To revert this setting, either set the smudge filter by hand: git config -- global
filter.Ifs.smudge "git - Ifs smudge - %f" or by re-installing git Ifs and enforcing
default options: git Ifs install -- force (carefull, this will also overwrite other Ifs

configs you might have set!).

5.5.3 Skip download for each operation

Instead of setting skip-smudge globally, you specify which files to download and which files to
ignore for each git Ifs clone , git Ifs pull and git Ifs fetch -operation individually.
Your git Ifs installation needs to be fairly recent for this to work, also make sure to use the git
Ifs - variety of the commands. Files are excluded by passing a pattern to the -X or --exclude
option. Some examples:

1 GIT_LFS_SKIP_SMUDGE-=1 git clone git@git.geomar.d e:dm/git_workflow_nb.git
(This will download only pointer files, substituting the original data files! In order to
download the original contents you then have to explicitely pull themA see chapter 5.5.5.)

1 ogitlfs clone git@git.geomar.de:dm/git_workflow_nb .git -- branch Ifs_test
-- exclude=* (by passing -X*, you are telling git Ifs to exclude all files from the downloads)

1 git Ifs clone git@git.geomar.de:dm/git_workflow_nb.git -- branch Ifs_test
-X *.zip (exclude all Zip-Files)

1 git Ifs clone git@git.geomar.de:dm/git_workflow_nb.git -- branch Ifs_test
-- exclude='Test_Files/* (exclude all files in the subfolder Test_Files)

17

5.5.4 Configure repository
In the methods above, the filtering is done by each git user themselve. For git repositories with

large amounts of data, it is preferable to configure defaults in the repository itself, preventing
new or forgetfull users from downloading the whole repository by mistake.

You can do this by using the command git config - f .Ifsconfig Ifs.fetchexclude
‘Test_Files/* which creates the following .lfsconfig file (you could of course also
create it with your favourite text editor):

[Ifs]
fetchexclude = Test_Files/*

Don't forget to add your new .Ifsconfig to git: git add .Ifs config !

The Ifs.fetchexclude -option let you specify a pattern of files to exclude by default. The
example above excludes all files in the Test_Files folder, i.e. clients will not automatically
download Ifs tracked files from this folder on clone or pull. This means that the command git

clone git@git.geomar.de:dm/git_workflow nb.git -- branch Ifs_test will
download only the placeholders for the large files tracked by git Ifs in the Test_File directory.

5.5.5 Downloading skipped files

Now you know how to prevent git Ifs from downloading large files, but what if you actually want
some of these files? The - X option has a counterpart: with git pull -1 or git pull -
include you can specify the file you want to have locally:

T gt Ifs pull -1 ™".csv" - X "™ (download all previously excluded .csv files)

T git Ifs pull -1 "Test Files/" - X " (download all previously excluded files in
Test_Files folder)

T it Ifs pull -- include="Test Files/" -- exclude="" (same as above)

Make sure to include an empty -X "™ /-- exclue="" statement, this is needed to temporarily
override the fetchexclude setting from the .Ifs config

Finally, running git Ifs fetch -- all will download all files tracked by Ifs, regardless of
other configurations.

5.6 Migrating existing repository datato LFS

While multiple tools exist, the current recommendation is to use git-Ifs-migrate.

1 Install Java 1.8 or later

1 Download the latest binaries from here: https://github.com/bozaro/qit-Ifs-
migrate/releases/tag/0.2.5

1 Do a mirror clone of the repository to rewrite: git clone -- mirror
git @github.com : bozaro /git -Ifs - migrate . git

Rewrite e.g. all *.mp4 video files in the repository:

1 java -jar git -Ifs -migrate .jar \
1 -s git -Ifs -migrate .git \

18

T -d git -Ifs -migrate -converted .git \
1 -g git @github.com : bozaro /git -Ifs - migrate -converted .git \
1‘[II*-mp4II

Push the converted repository as a new repository:

1 eqg gt push -- mirror @it @github.com : bozaro /git -Ifs - migrate -
converted . git

6. Using Git to share code and data

Version control really comes into its own when you begin to collaborate with other people.
Systems |like Git allow us to move work between
easiest to use one copy as a central hub, and t
laptop. Most programmers use hosting services like GitHub, BitBucket or GitLab to hold those

master copies.

Start by sharing the changes youbve made to your

1 LogintoGeomar 6s Gi thitpa/lyit.geenande r
71 In your dashboard, click the green "New project” button (see description in Chapter 1.1)

You can now connect your local repository with the Git Lab repository. You do this by
making the Gitlab repository a remote for the local repository. The website of the repository on
Gitlab includes the string we need to identify: They provide a url to the remote repository.

Copy the URL that is displayed, go into the local planets repository, and run this command:
1 cd planets
1 it remote add origin git @git.geomar.de : <your - username >/ planets . git
(Make sure to use the URL for your repository rather than the dummy-one provided here.)

GitLab Projects v Groups Activity Milestones Snippets O+ Thisproject Search a 0 N = .v
P planets Lisa Pagialonga » planets » Details

Details

Activity

Merge Requests 0 Star 0 SSH~ gitegit.geomar.de:lisa-paglial Wt 4+~ A Global ~
M wii The repository for this project is empty

If you already have files you can push them using command line instructions below.
Otherwise you can start with adding a README, a LICENSE, or a gitignore to this project.
L3 Settings You will need to be owner or have the master permission level for the initial push, as the master branch is automatically protected.
Command line instructions
Git global setup

git config —global “Lisa Paglialonga"
1 “lpaglialongaggeonar. de"

Create a new repository

git clone gitggit.geomar.de:1isa-paglialonga/planets.git
cd planets

touch README.md

git add README.md
9it commi “add README"
it push -u origin master

You can check that the command has worked by running git remote -v:

19

https://git.geomar.de/

1

git remote -v

The name origin is a local nickname for your remote repository: you could use something else if
you want to, but origin is by far the most common choice. Once the nickname origin is set up,
the following command will push the changes from our local repository to the repository on

GitLab:

il

git push -u origin master

(The -u-option associates the local branch master with origin/master which is your nickname for
master in the remote repository. This way, you can later just use git push and Git knows where
to push.)

You can also clone an existing repository on Gitlab, which means downloading a project with
entire history from the remote repository.

f

git clone git @git.geomar.de :<your - username >/ planets . git
(Make sure to use the URL for your repository rather than the dummy-one provided here.)

You can pull changes from the remote repository to the local one as well:

f

git pull

6. Optionally, choose an avatar for your project.

7. Using Git to explore history aka provenance

f

You can refer to the most recent commit of the working directory by using the identifier
HEAD. If you want to see what you changed at different steps, you can use git diff ,
but with the notation HEAD~1, HEAD~2, and so on, to refer to old commits: e.g. git

diff HEAD~1 mars.txt

We can also refer to commits using those long strings of digits and letters that git log
displays. These are unique IDs for the changes, and i u n i ppaileddes mean unique:
every change to any set of files on any computer has an unique 40-character identifier.
But typing out random 40-character strings is annoying, so Git let you use just the first
few characters: e.g. git diff f22b25e mars.txt

git checkout checks out (i.e., restores) an old version of a file. In this case,we & r
telling Git that we want to recover the version of the file recorded in HEAD, which is the
last saved commit. If we want to go back even further, we can use a commit identifier
instead: e.g. git checkout f22b25e mars.txt

.git

HEAD :;;;;;;;;;>

1854776

FILEL.txt
git checkout HEAD~1

or
F— git checkout f22b2Se

BH2134F

HEAD~1

HEAD~2

repository FILE2.txt

History on GitLab

You can also explore the history of your project on GitLab. To do this click on History above
your project contents:

-

In the History view all commits of your project are listed. If you want to have a look to a certain
version of your project, you have to click on the appropriate message or ID of the versions
commit on the right side:

O

If your file is already on GitLab and you want to delete it, you now can directly delete it from the
web GUI!

O

21

